Regression in 10 Minutes

Rob Williams

Washington University in St. Louis
January 27, 2020

Social science?

- What is the difference between historical and social scientific understandings of civil war?

Social science?

- What is the difference between historical and social scientific understandings of civil war?
- History: how can be best understand a single specific civil war?

Social science?

- What is the difference between historical and social scientific understandings of civil war?
- History: how can be best understand a single specific civil war?
- Social science: what are general patterns of cause and effect in civil war?
- What is the difference between historical and social scientific understandings of civil war?
- History: how can be best understand a single specific civil war?
- Social science: what are general patterns of cause and effect in civil war?
- The social scientific perspective implies the ability to make predictions
- Look at what we know, try to summarize out
- Look at what we know, try to summarize out
- Create a rule we can use to explain what we see
- Look at what we know, try to summarize out
- Create a rule we can use to explain what we see
- Apply that rule to new information

Get the data

Line it up

What's in a line?

- If you think back to middle school geometry

$$
y=m x+b
$$

What's in a line?

- If you think back to middle school geometry

$$
y=m x+b
$$

- A line is defined by its slope and intercept

What's in a line?

- If you think back to middle school geometry

$$
y=m x+b
$$

- A line is defined by its slope and intercept
- Slope: change in x associated with a one unit change in y

What's in a line?

- If you think back to middle school geometry

$$
y=m x+b
$$

- A line is defined by its slope and intercept
- Slope: change in x associated with a one unit change in y
- Rise over run

What's in a line?

- If you think back to middle school geometry

$$
y=m x+b
$$

- A line is defined by its slope and intercept
- Slope: change in x associated with a one unit change in y
- Rise over run
- Intercept: where does the line intersect the y axis

Regression

- Linear regression, OLS (ordinary least squares), the linear model
- Linear regression, OLS (ordinary least squares), the linear model
- Best thought of (in two dimensions) as fitting a line to a cloud of data
- Linear regression, OLS (ordinary least squares), the linear model
- Best thought of (in two dimensions) as fitting a line to a cloud of data
- Equation:

$$
Y=\alpha+\beta X+\epsilon
$$

Breaking it down

- Y : dependent/outcome/response variable

Breaking it down

- Y : dependent/outcome/response variable
- X : independent/explanatory/predictor variable

Breaking it down

- Y : dependent/outcome/response variable
- X : independent/explanatory/predictor variable
- α : intercept coefficient

Breaking it down

- Y : dependent/outcome/response variable
- X : independent/explanatory/predictor variable
- α : intercept coefficient
- β : slope coefficient

Breaking it down

- Y : dependent/outcome/response variable
- X : independent/explanatory/predictor variable
- α : intercept coefficient
- β : slope coefficient
- ϵ : unobserved error

Breaking it down

- Y : dependent/outcome/response variable
- X : independent/explanatory/predictor variable
- α : intercept coefficient
- β : slope coefficient
- ϵ : unobserved error
- $\alpha+\beta X$: mean of Y given the value of X

Breaking it down

- Y : dependent/outcome/response variable
- X : independent/explanatory/predictor variable
- α : intercept coefficient
- β : slope coefficient
- ϵ : unobserved error
- $\alpha+\beta X$: mean of Y given the value of X
- α : mean of Y when X is zero

Breaking it down

- Y : dependent/outcome/response variable
- X : independent/explanatory/predictor variable
- α : intercept coefficient
- β : slope coefficient
- ϵ : unobserved error
- $\alpha+\beta X$: mean of Y given the value of X
- α : mean of Y when X is zero
- β : increase in Y associated with a one unit increase in X

Breaking it down: α

- α is the intercept

Breaking it down: α

- α is the intercept
- We can think of it as where the line intersects the y-axis

Breaking it down: α

- α is the intercept
- We can think of it as where the line intersects the y-axis
- It is also the value of Y when $X=0$

Breaking it down: α

- α is the intercept
- We can think of it as where the line intersects the y-axis
- It is also the value of Y when $X=0$
- This doesn't happen in every set of data

Breaking it down: α

- α is the intercept
- We can think of it as where the line intersects the y-axis
- It is also the value of Y when $X=0$
- This doesn't happen in every set of data
- This also doesn't necessarily make sense in every set of data

Breaking it down: α

- α is the intercept
- We can think of it as where the line intersects the y-axis
- It is also the value of Y when $X=0$
- This doesn't happen in every set of data
- This also doesn't necessarily make sense in every set of data
- No one can be zero inches tall

Breaking it down: α

- α is the intercept
- We can think of it as where the line intersects the y-axis
- It is also the value of Y when $X=0$
- This doesn't happen in every set of data
- This also doesn't necessarily make sense in every set of data
- No one can be zero inches tall
- No country can have zero population

Breaking it down: β

- β is the slope

Breaking it down: β

- β is the slope
- It is the average increase in Y when X increases by one unit

Breaking it down: β

- β is the slope
- It is the average increase in Y when X increases by one unit
- Moving from 11 to 12 years of education is associated with a 2 point decrease in support for the death penalty (on a 100 point scale)

Breaking it down: β

- β is the slope
- It is the average increase in Y when X increases by one unit
- Moving from 11 to 12 years of education is associated with a 2 point decrease in support for the death penalty (on a 100 point scale)
- What a one unit increase in X means is determined how you measure X

Breaking it down: β

- β is the slope
- It is the average increase in Y when X increases by one unit
- Moving from 11 to 12 years of education is associated with a 2 point decrease in support for the death penalty (on a 100 point scale)
- What a one unit increase in X means is determined how you measure X
- β is a function of your X e.g. it will be different from thousands of USD vs. millions of USD

Breaking it down: β

- β is the slope
- It is the average increase in Y when X increases by one unit
- Moving from 11 to 12 years of education is associated with a 2 point decrease in support for the death penalty (on a 100 point scale)
- What a one unit increase in X means is determined how you measure X
- β is a function of your X e.g. it will be different from thousands of USD vs. millions of USD
- Taken together, α and β let us make predictions for Y for a given X value

Predicting

Evaluating

Overall error

A picture is worth a thousand words

- You'll often have to read a regression table instead of looking at a plot

A picture is worth a thousand words

- You'll often have to read a regression table instead of looking at a plot
- This is common because we're usually dealing with more than two variables

A picture is worth a thousand words

- You'll often have to read a regression table instead of looking at a plot
- This is common because we're usually dealing with more than two variables
- Let's give it a try!

Get familiar with this

	Model 1
Years	0.19^{*}
	(0.09)
(Intercept)	$18.73^{* * *}$
	(2.70)
R^{2}	0.09
Adj. R	0.07
Num. obs.	50
RMSE	11.38
${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$	

Seeing stars

- What are those stars above each coefficient?

Seeing stars

- What are those stars above each coefficient?
- They represent the level of uncertainty

Seeing stars

- What are those stars above each coefficient?
- They represent the level of uncertainty
- The p-value is (very) roughly an estimate of how likely it is that we get the results we did when if is no relationship between x and y

Seeing stars

- What are those stars above each coefficient?
- They represent the level of uncertainty
- The p-value is (very) roughly an estimate of how likely it is that we get the results we did when if is no relationship between x and y
- This is a gross oversimplification, and you should really take QPM

Seeing stars

- What are those stars above each coefficient?
- They represent the level of uncertainty
- The p-value is (very) roughly an estimate of how likely it is that we get the results we did when if is no relationship between x and y
- This is a gross oversimplification, and you should really take QPM
- Political scientists have decided that a p-value below 0.05 is sufficiently safe to think about an actual relationship between x and y

Seeing stars

- What are those stars above each coefficient?
- They represent the level of uncertainty
- The p-value is (very) roughly an estimate of how likely it is that we get the results we did when if is no relationship between x and y
- This is a gross oversimplification, and you should really take QPM
- Political scientists have decided that a p-value below 0.05 is sufficiently safe to think about an actual relationship between x and y

